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The GlobalSoilMap initiative calls for the generation of continuous maps for soil properties, including pH in a 1:5
suspension of soil in water (pH 1:5W) based on a standard method, ISO 10390. The United States Department of
Agriculture-Natural Resources Conservation Service (USDA-NRCS) employs a 1:1 suspension of soil in water
(pH 1:1W), and a 1:2 suspension of soil in CaCl2 (0.01 M) (pH 1:2CaCl2) for routine pH analysis (Soil Survey Staff,
2009). The objective of this study was to determine the most efficient way to convert these pH values to the
GlobalSoilMap standard. For this analysis, 563 soil samples from the USDA-NRCS-National Soil Survey Center
(NSSC) soil archive, which had been previously analysed for pH 1:1W and pH 1:2CaCl2, were selected for determi-
nation of pH 1:5W, pH 1:5CaCl2 and electrical conductivity (EC) in 1:2 suspension of soil in water (EC 1:2W). The
samples represented 11 soil orders, 8mineralogy classes, 5 family particle size classes, 4 geneticmaster horizons,
and 7 depth intervals. For each category, 25–30 samples were selected to represent a comprehensive pH range.
Regression analysis showed strong and significant relationships (R2 N 0.92) between pH methods across all
categories. The simple linear regression equation, pH 1:5W = −0.51 + 1.06 pH 1:1W, had an RMSE = 0.44
pH units. Smoothing spline, did not significantly improve pH 1:5W predictions, nor did the incorporation of EC.
Genetic horizons and soil depth intervals did not have a significant effect on pH 1:5W. The linear regression
models for predicting pH 1:5W using pH 1:1W or pH 1:2CaCl2 as predictors emerged as the best candidates for a
standard pedotransfer function. Using pedotransfer functions such as these will allow for the simple conversion
of existing measured and estimated pH 1:1W or pH 1:2CaCl2 values from NRCS databases to the GlobalSoilMap
standard of pH 1:5W.

Published by Elsevier B.V.

1. Introduction

Soil pH, which is an importantmeasure of soil acidity, nutrient avail-
ability, and soil productivity, is considered amaster variable (Brady and
Weil, 1999). Soil pH influences many biogeochemical processes in the
soil. Furthermore, pH is measured during typical analysis of soil sam-
ples, and is indirectly used as a key property in soil classification systems
(Soil Survey Staff, 1999). TheUSDA-NRCS Kellogg Soil Science Laborato-
ry (KSSL) routinely determines pH 1:1W and/or pH 1:2CaCl2 (Miller and
Kissel, 2010; Soil Survey Staff, 2009). As of 2012, 300,000 samples from
more than 50,000 pedons from across the United States and around the
world have been analysed. This data is available through various portals
such as Web Soil Survey (USDA-NRCS, 2011). These two methods are
among many different laboratory procedures used to assess soil pH in

soils around theworld, withmethods varying in the ratio of soil to solu-
tion (e.g., 1:1, 1:2, 1:5) and the salt used in the solution (e.g., none, CaCl2,
KCl). The GlobalSoilMap initiative calls for the generation of continuous
maps of soil pH 1:5W (pHmeasured for a ratio of 1 part soil and 5 parts
water solutions) for the entire world for standard depth increments
(0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm) (GlobalSoilMap,
2012).

In the absence of a single, universally-used method for determining
soil pH, the GlobalSoilMap specifications refer to the soil science litera-
ture for functions to convert between the various pH methods
(GlobalSoilMap, 2012), including the work of Conyers and Davey
(1988), Bruce et al. (1989), Aitken and Moody (1991), and Miller and
Kissel (2010) (Table 1). In most of this work, the relationships devel-
oped for converting between methods were based on relatively small
or geographically-limited sample sets. For example, Bruce et al. (1989)
used 182 soil samples and Aitken and Moody (1991) used 90 samples
to develop relationships for converting between pH 1:5CaCl2 and
pH 1:5W for acidic soils in Australia. Conyers and Davey (1988) devel-
oped relationships for converting between pH 1:5CaCl2 and pH 1:5W
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based on 11 soil samples from Australia. Miller and Kissel (2010)
analysed 120 soil samples from 33 US states and two Canadian prov-
inces and developed relationships for various methods including
pH 1:1W, pH 1:1CaCl2, pH 1:2W, pH 1:2CaCl2, and pH of saturated paste
extract. Large datasets were used for two studies relating pH 1:5W and
1:5CaCl2. Ahern et al. (1995) developed relationships based on 7894
soil samples and Henderson and Bui (2002) based on 70,465 soil sam-
ples both from Australia. We know of no studies that have developed
relationships for converting from pH 1:1W and 1:2CaCl2 to pH 1:5W in-
cluding those cited by GlobalSoilMap. While a few studies have investi-
gated the influence of factors such as soil depth on pH (Bruce et al.,
1989) the authors found none that evaluate the relationship of soil
order, texture and mineralogy to soil pH.

Many researchers have found that the relationship between
pH 1:5W and pH 1:5CaCl2 is not linear across the entire range of mea-
sured soil pH values (Ahern et al., 1995; Aitken and Moody, 1991;
Bruce et al., 1989; Henderson and Bui, 2002). Various mechanisms
have been offered in soil science literature to explain the non-
linearity, such as: (i) calcium carbonate buffering for high soil pH; (ii)
displacement and hydrolysis of Al3+ from exchange sites by CaCl2 for
low soil pH (Little, 1992), and (iii) variable charge theory (Aitken and
Moody, 1991). Thiswork has resulted in thedevelopment of various cal-
ibration equations from linear functions to higher-order polynomials
and spline functions (Ahern et al., 1995; Aitken and Moody, 1991;
Bruce et al., 1989; Conyers and Davey, 1988; Henderson and Bui,
2002; Little, 1992; Miller and Kissel, 2010; Minasny et al., 2011).
When comparing pH 1:5W and pH 1:5CaCl2 methods, Aitken and
Moody (1991) found a quadratic function to fit the data better than a
simple linear regression, but Ahern et al. (1995) found that the quadrat-
ic function was not suitable for a wide range of pH values. Little (1992)
found a cubic function that best described the relationships for pH's b5
and N7. Henderson and Bui (2002) found the smoothing spline function
with six degrees of freedom to be a better fit for a wide range of pH
values from 2.5 to 10.5. More recently, Minasny et al. (2011) included
electrical conductivity (EC) in the prediction of pH1:5CaCl2 from 1:5W,
which improved predictions for acid and alkaline pH values.

The National Cooperative Soil Characterization Database (SCDB)
contains data on more than 50,000 soil samples (National Cooperative
Soil Survey, 2011). This extensive database affords an excellent oppor-
tunity to establish relationships between methods of soil pH measure-
ment using soil samples that represent many soil orders, mineralogy
and family particle size classes, as well as different genetic horizons
and soil depths, which have not been the case for the other studies.

The objectives of this studywere to (i) develop statistical relationships
between soil pH 1:1W, 1:2CaCl2, EC and 1:5W using a variety of methods,

and to (ii) discern the influence, if any, of other categorical soil variables
on those relationships. The development of these relationships will en-
able the conversion of soil pH 1:1W and pH 1:2CaCl2 as routinely deter-
mined by the National Soil Science Center-Kellogg Soil Science
Laboratory (NCSS-KSSL) to the soil pH 1:5W required to meet
GlobalSoilMap specifications. The selected pedotransfer functions will
be used to convert the State Soil Geographic STATSGO2 (Soil Survey
Staff, 2011a,b) database pH values to pH1:5W that will then be used to
generate predictive soil pHmaps that conform to theGlobalSoilMap spec-
ifications similar to the ones produced by Odgers et al. (2012) for soil or-
ganic carbon.

2. Material and methods

2.1. Soil samples

A total of 563 soil samples representing 98 pedons from the SCDB and
physically archived at the KSSL that had been previously analysed for
soil pH 1:1W and pH 1:2CaCl2 were selected for determination of soil
pH 1:5W, pH 1:5CaCl2, and EC. In this paper, only the results for the con-
version of soil pH 1:1W and pH 1:2 CaCl2 to pH 1:5W will be presented
along with the influence of EC. The soil samples represented 11 soil or-
ders (Alfisols, Andisols, Aridisols, Entisols, Gelisols, Histosols, Inceptisols,
Mollisols, Spodosols, Ultisols, and Vertisols; Soil Survey Staff, 1999); 8
mineralogy classes (Amorphic, Glassy, Glassy over amorphic, Halloysitic,
Isotic, Kaolinitic, Mixed, and Smectitic; Soil Survey Staff, 2010); 5 family
particle size classes (Clayey, Coarse loamy, Fine loamy, Fine silty, and
Sandy; Schoeneberger et al., 2012), 4 genetic master soil horizons
(O, A, B, and C) (Soil Survey Staff, 1999); and 7 depth intervals
(0–10 cm, 10–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, 100–200 cm,
and 200–350 cm). Each class had 25 to 30 samples that represented a
comprehensive range of soil pH values from 2.9 to 10.5 and a wide geo-
graphic distribution (Fig. 1). The spatial distribution of point locations
shows uneven representation of the southwestern US because the
deserts have not been sampled as intensively as the agricultural areas.
However, an adequate sample size of 24 samples from Aridisols repre-
sents soils of high importance for agriculture.

2.2. Analytical procedures

All soil samples had been previously analysed for pH 1:1W and
1:20.01 MCaCl2 according to the methods used by the KSSL (Soil Survey
Staff, 2009). It was assumed that the likelihood of major changes in
the pH is very low for dried samples that are stored in closed containers
and at room temperatures. pH1:5W and pH 1:5CaCl2 were determined

Table 1
Models for relating various pH methods.

No. obs. Predicted Predictor(s) Model R2 Source

11583 pH 1:5Ca
a pH 1:5W, EC1:5W Linear 0.94 Minasny et al. (2011)

11583 pH 1:5Ca pH 1:5W, EC1:5W Curvilinear 0.95 Minasny et al. (2011)
120 pH 1:1W pH 1:1Ca

b, EC1:1W
Exponential 0.99 Miller and Kissel (2010)

120 pH 1:2W pH 1:1Ca, EC1:1W Exponential 0.98 Miller and Kissel (2010)
70465 pH 1:5Ca pH 1:5W Smoothing spline 0.96 Henderson and Bui (2002)
7894 pH 1:5Ca pH 1:5W Linear 0.93 Ahern et al. (1995)
7894 pH 1:5Ca pH 1:5W Second order polynomial 0.93 Ahern et al. (1995)
7894 pH 1:5Ca pH 1:5W Third order polynomial 0.94 Ahern et al. (1995)
1342 pH 1:5Ca pH 1:5W Linear 0.89 Little (1992)
1342 pH 1:5Ca pH 1:5W Second order polynomial Na Little (1992)
1342 pH 1:5Ca pH 1:5W Third order polynomial Na Little (1992)
90 pH 1:5Ca pH 1:5W Linear 0.88 Aitken and Moody (1991)
90 pH 1:5Ca pH 1:5W Second order polynomial 0.92 Aitken and Moody (1991)
90 pH 1:5Ca pH 1:5W Linear 0.90 Aitken and Moody (1991)
90 pH 1:5Ca pH 1:5W Second order polynomial 0.94 Aitken and Moody (1991)
182 pH 1:5Ca pH 1:5W Linear 0.68 Bruce et al. (1989)
11 pH 1:5Ca pH 1:5W Linear 0.99 Conyers and Davey (1988)

a pH (1:5 0.01 m CaCl2).
b pH (1:1 0.01 m CaCl2).
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based on the methods described by Rayment and Higginson (1992).
Electrical conductivity (dS cm−1) was determined for 416 out of 563
soil samples that did not already have it according to the methodology
employed by the NSSC-KSSL (Soil Survey Staff, 2004).

2.3. Statistical analysis

2.3.1. Mean pH comparisons for soil conditions and measurement methods
An analysis of variance (ANOVA)was used to test the significance of

each categorical variable separately (soil order, mineralogy, family par-
ticle size classes, genetic master horizons, and depth intervals) on soil
pH. The Tukey–Kramer Honestly Significant Difference (HSD) multiple
comparison test was conducted to compare the mean soil pH values of
each class (Kramer, 1956; Tukey, 1953). The statistical analyses were
conducted using JMP Version 9.0 (SAS Institute Inc.; Schlotzhauer,
2007) statistical package. We did not test for interactions between
categorical variables on the predicted soil pH.

2.3.2. The influence of soil conditions and measurement methods on
predicted pH 1:5W

The forward step-wise procedure was used in conjunction with
adjusted R2 RMSE and the Akaike Information Criterion (AIC) (Akaike,
1974, 1976) to determine the best predictors of pH 1:5W. The AIC
expression is:

AIC ¼ N lnRe þ 2p

where N is the number of samples, p is the number of parameters in the
model being evaluated and Re is the residual sum of squares. The AIC
measures the relative goodness of fit for a model compared to other
models with more than one predictor (Akaike, 1974, 1976), and is not
necessarily an indicator of the best model. Models with the highest R2,
lowest RMSE and AIC were selected.

2.3.3. The influence of model technique to the prediction of pH 1:5W
Simple linear regression analysis was conducted to test the overall

significance of the relationship between pH 1:5W and continuous pre-
dictors (pH 1:1W, pH 1:2CaCl2 and EC). Smoothing spline functions (De

Boor, 2001; Green and Silverman, 1994; Reinsch, 1967), artificial neural
networks (ANN) (Hastie et al., 2009; Rumelhart andMcClelland, 1986),
and random forest (RF) (Breiman, 2001) models were also tested. ANN
is used for non-linear relationships andmostly for caseswhere these re-
lationships are not known. Random forest which is a distribution-free
method was used because it can better handle a mix of categorical
and continuous variables (Díaz-Uriarte and de Andrés, 2006; Izenman,
2008). The RF was performed in R (R Development Core Team, 2011).
Finally, the predicted soil pH 1:5W from all models was regressed
against the measured soil pH 1:5W to examine the model fit using JMP
9.0 (SAS Institute Inc.; Schlotzhauer, 2007).

3. Results and discussions

3.1. Mean pH comparisons by soil conditions and measurement method

The563 selected soil samples analysed for pH 1:5W in this study rep-
resented a wide range of soil conditions and pH values from 2.9 to 10.5
for a comprehensive evaluation (Table 2). First, we examined the differ-
ences in the overall means of soil pH 1:5W, pH 1:1W and pH 1:2CaCl2
(Table 3). Then we examined the mean differences within soil condi-
tions (soil order, mineralogy classes, family particle size classes, genetic
master horizons and depth intervals).

The overall mean value of soil pH 1:2CaCl2 across all samples was
5.76, which was significantly lower (p-value b 0.0001) than the mean
soil pH 1:1W (6.34) and pH 1:5W (6.23). The overall mean of soil
pH 1:5W was significantly lower than the overall mean of pH 1:1W
(p-value b 0.0001), by 0.11 pH units. The lower mean soil pH 1:2CaCl2
compared to the mean soil pH 1:1 W and pH 1:5 W has been attributed

Fig. 1. The spatial distribution of sample locations for North America.

Table 2
Summary statistics by methods for soil pH measurement.

Method Mean St. dev. Min. Median Max.

pH 1:1W 6.2 1.5 3.5 6.0 10.4
pH 1:5W 6.3 1.3 3.4 6.2 10.5
pH 1:2Ca 5.8 1.4 2.9 5.6 10.5
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to the ionic strength of the soil solution (Aitken and Moody, 1991;
Conyers and Davey, 1988; Miller and Kissel, 2010). Addition of salts to
the solution lowers the pH due to the exchange of Ca2+ with H+ and
Al3+ on solid surfaces (Kissel et al., 2009; Miller and Kissel, 2010;
Pierre et al., 1970; Schofield and Taylor, 1955). The lower mean of soil
pH 1:5W compared to the mean of pH 1:1W has been attributed to a di-
lution effect (Aitken andMoody, 1991; Conyers and Davey, 1988;Miller
and Kissel, 2010). For example, Keaton (1938) and Davis (1943) found
that increasing the water:soil ratio from 1:10 to 10:1 resulted in a
decrease of 0.40 pH units.

For all methods of soil pH determination, there were significant dif-
ferences between the means of the soil order, mineralogy, and family
particle size classes; however, there were no significant differences be-
tween the means of the genetic master horizons and depth intervals
(Table 3). The lack of difference between depths and genetic master
horizons is likely due to the variability of parent materials and other
factors with depth across the dataset. Bruce et al. (1989) found that
the pH1:5 W had the same modal range (5.0–5.5) for 91 surface and
subsurface samples from acid soil in Queensland, Australia.

Multiple-comparisons of mean pH values (results not shown) show
that the mean soil pH of Aridisols was significantly higher than the
mean soil pH of the other soil orders for all methods of soil pH determi-
nation. Ultisols (4.61–5.27), Spodosols (4.27–4.86), and Histosols
(4.83–5.69) had the lowest soil pH. The higher mean value of Aridisols
for all pHmeasurementmethods compared to other soil orders is likely
due to the accumulation of water-soluble minerals. In environments,
with a general lack of precipitation where Aridisols are typically
found, these more soluble minerals do not leach out of the profile,
with compounds such as calcium carbonate driving higher pH values
(Buol et al., 2003; Soil Survey Staff, 2010). Ultisols generally undergo
intense weathering and leaching of primaryminerals that contain calci-
um, magnesium and potassium. This leads to relatively acidic soil pH
values (Buol et al., 2003; Soil Survey Staff, 2010). The subsurface accu-
mulation of humus–aluminiumand humus–iron complexes is partly re-
sponsible for low pH values of Spodosols (Buol et al., 2003; Soil Survey
Staff, 2010), whereas Histosols found in rain-dependent raised bogs
can have soil pH values that vary between 3 and 5.5 (Buol et al., 2003;
Soil Survey Staff, 2010).

The overall mean soil pH of the smectitic soils was significantly
higher than that of the other mineralogy classes for all methods of soil
pH determination. The mean pH values were 7.19 for pH 1:2CaCl2 to
7.81 for pH 1:5W. The overall mean soil pH of clayey soils was signifi-
cantly higher than the overall mean soil pH of soils in the other family
particle size classes, for all methods of soil pH determination. The
mean pH values were 6.29 for pH 1:2CaCl2 and 6.91 for pH 1:5W. The
higher pH values for Vertisols have been linked to their predominately
smectitic mineralogy and finer soil texture (Chan et al., 1988; Dang
et al., 1994a,b; Uehara and Keng, 1974). For example, Dang et al.
(1994a,b) found that the mean pH 1:5 W for 14 Vertisols soil samples
in Queensland, Australia was 8.5 (7.5–9.0) with a mean smectitic clay
content of 75% (57–91%). Chan et al. (1988) also found the mean
pH 1:5 W for 9 Vertisols soil samples to be 7.8 (6.7–8.8)which is higher
compared to other soil orders. For this study, 42% of the smectitic sam-
ples belonged to Vertisols, which had also the highest pH values for all

pHmeasurementmethods. Also 50% of clayey soils sampleswere smec-
titic which explains partly the higher pH values compared to other fam-
ily particle size classes. The differences between mineralogy classes
could not be explained completely by soil order or in the case of family
particle size class bymineralogy differences. In this study, it was difficult
to separate these effects.

3.2. The influence of model technique on the prediction of pH 1:5W

3.2.1. Linear regression models
Simple linear regression of the pH 1:5W on pH 1:1W and pH 1:2CaCl2

revealed highly significant linear relationships (Table 4). The slope of
the regression lines for pH 1:5W–pH 1:1W was 1.06 with an RMSE of
0.44 pH units, and for pH 1:5W–pH 1:2CaCl2 was 1.01 with an RMSE of
0.42 pH units. In each case, more than 90% of the variability in soil
pH 1:5W was explained by pH 1:1W or pH 1:2CaCl2.

3.2.2. Multiple linear regression models
The AIC along with adjusted R2 and RMSE determined the statistical

model that minimized the loss of information while keeping the num-
ber of model parameters (predictors) at minimum. The “best” model
resulting from the step-wise forward procedure that included all con-
tinuous and categorical variableswas the onewith pH 1:1W, pH 1:2CaCl2,
soil order, mineralogy class, family particle size class, and soil depth
with adjusted R2 0.95 and RMSE 0.33. This model was a slight improve-
ment compared to the simple linear regression model with only
pH 1:1W as a predictor with an R2 of 0.91 and RMSE of 0.44 or 1:2CaCl2
with an R2 of 0.92 and RMSE of 0.42 (Fig. 2). The addition of EC
(Fig. 3a) as a predictor did not improve the prediction at all. The
decrease of the AIC by the addition of categorical variables to pH 1:5W
vs. pH 1:1W and pH 1:5W pH 1:2CaCl2 models was highly variable. The
largest decrease in AIC was observed for mineralogy class (192,
pH 1:1W) followed by soil order (184, pH 1:1W). However, for themin-
eralogy classwhichwas the best case scenario the adjusted R2 increased
by only 0.03 while RMSE decreased by only 0.07 pH units.

Overall, our results indicate that categorical variables did not
substantially improve predictions over linear regression with other pH
measures. Ahern et al. (1995) found similar results when comparing
the influence of surface (0–0.1 m), subsurface (0.1–0.2 m; 0.2–0.3 m)
and subsoil (N0.3 m) depth categories on the relationship between
pH 1:5W and pHCaCl2. The distribution of the residual errors between

Table 3
Analysis of variance (ANOVA) for the significance of classes and/or grouped mean pH
values within each soil condition.

pH 1:5W pH 1:1W pH 1:2CaCl2

Soil conditions F ratio Prob N F F ratio Prob N F F ratio Prob N F

Soil order 37.88 b0.0001 38.89 b0.0001 32.07 b0.0001
Mineralogy class 28.03 b0.0001 23.21 b0.0001 22.80 b0.0001
Family particle size class 6.68 b0.0001 3.84 0.0041 4.98 0.0006
Genetic master horizon 0.61 0.6000 0.94 0.4198 0.49 0.6825
Depth intervals 0.63 0.7000 0.81 0.5600 0.92 0.4747

Table 4
Model parameter influence on predicted pH 1:5W from the forward step-wise procedure.

Model parameters Adjusted R2 RMSE P value AIC

pH 1:1W 0.91 0.44 b0.0001 676
pH 1:2CaCl2 0.92 0.42 b0.0001 621
pH 1:1W & 1:2CaCl2 0.93 0.40 b0.0001 570
pH 1:1W & soil order 0.94 0.37 b0.0001 489
pH 1:2CaCl2 & soil order 0.95 0.35 b0.0001 441
pH 1:1W & 1:2CaCl2 & soil order 0.96 0.33 b0.0001 383
pH 1:1W & mineralogy class 0.94 0.39 b0.0001 484
pH 1:2CaCl2 & soil mineralogy 0.94 0.38 b0.0001 473
pH 1:1W & 1:2CaCl2 & mineralogy class 0.95 0.36 b0.0001 433
pH 1:1W & family particle size class 0.92 0.43 b0.0001 650
pH 1:2CaCl2 & family particle size class 0.93 0.41 b0.0001 596
pH 1:1W & 1:2CaCl2 & family particle size class 0.94 0.38 b0.0001 526
pH 1:1W & genetic master horizons 0.92 0.44 b0.0001 655
pH 1:2CaCl2 & genetic master horizons 0.93 0.42 b0.0001 590
pH 1:1W & 1:2CaCl2 & genetic master horizons 0.94 0.38 b0.0001 546
pH 1:1W & Soil depth intervals 0.92 0.44 b0.0001 685
pH 1:2CaCl2 & soil depth intervals 0.92 0.41 b0.0001 620
pH 1:1 W & 1:2CaCl2 & soil depth intervals 0.93 0.40 b0.0001 572
pH 1:1W & electrical conductivity 0.91 0.44 b0.0001 676
pH 1:2CaCl2 & electrical conductivity 0.92 0.42 b0.0001 621
pH 1:2W & 1:2CaCl2 & electrical conductivity 0.93 0.40 b0.0001 575

RMSE Root Mean Square Error.
AIC Akaike Information Criterion.
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classes within categorical variables was not over or under predicting
the pH 1:5W (results not shown). For both measured pH 1:1W and
pH 1:2CaCl2 predictors, Aridisols and Vertisols had the highest residuals
among soil orders while for family particle size classes the clayey class
had the highest residuals.

3.2.3. Other models

3.2.3.1. Smoothing spline models. In our study, we applied the smoothing
spline function to the pH 1:5W vs. pH 1:2CaCl2 and pH 1:5W vs. pH 1:1W.
For both fits, the adjusted R2 was 0.93—an increase of only 0.01 over the
linear fit of pH 1:5W–pH 1:2CaCl2, and an increase of 0.02 over the linear
fit of pH 1:5W–pH 1:1W. The smoothing spline resulted in a slight
decrease in RMSE from 0.42 for the linear model to 0.40 (pH 1:5W vs.
pH 1:2CaCl2) and from 0.44 to 0.41 (pH 1:5W vs. pH 1:1W).

3.2.3.2. Artificial neural network and random forest. The ANN and RF
models using both pH 1:1W and pH 1:2CaCl2 EC and categorical variables
as predictorswere not different from each other and performed similar-
ly compared to the linear models. The RMSE was only 0.37 for ANN
using pH 1:1W, pH 1:2CaCl2, and EC as predictors. This was slightly less
compared to the models using pH 1:1W and EC or 1:2CaCl2 and EC with
RMSE 0.38 and 0.43. The combination of EC and pH 1:1W as predictors
using RF resulted in an RMSE = 0.39. The addition of pH 1:2CaCl2 de-
creased the RMSE to 0.33. Because the distribution of EC was skewed
as found by other researchers (Minasny et al., 2011) the models with
log transformed EC were also tested. The models with log transformed
and un-transformed ECwere not different from each other with respect
to adjusted R2 and RMSE.

3.2.4. Model selection
The analysis of our limited data set (563 soil samples) indicates that

the simple linear model is adequate for predicting pH 1:5W and along
with AIC provides further support for the selection of the simple linear
regression model versus other models. More complex models did not
substantially improve the R2 and RMSE which makes the linear model
a more suitable candidate for use in conversion of soil pH data for
GlobalSoilMap.

In order to support the selection of simple models, the slight im-
provements in RMSE andR2 formore complexmodels need to be placed
in the context of other sources of errors. For example, the comparison
of the errors associated with the analytical methods for soil pH
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measurements and RMSE from using continuous (pH 1:1W, pH 1:2CaCl2,
and EC) and/or categorical predictors (soil order, mineralogy classes
and family particle size classes) indicates that analytical methods con-
tribute similar uncertainties to the predicted soil pH 1:5W (Table 5).

As part of the International Soil Exchange the NSSC-NSSL receives
soil samples quarterly from Wageningen University (Wageningen,
2010) for analysis by a suite of methods, including pH 1:1W and
pH 1:2CaCl2. NSSC-KSSL reports three different estimates of precision for
routine pH measurements: (i) between-laboratory reproducibility (R),
(ii) within-laboratory reproducibility (RL) and (iii) repeatability (r).
Each of these precision estimates measures the spread of results when
a sample is analysed repetitively under specified conditions, with 95%
confidence that results would fall within ± (R, RL, or r) of the mean.

In our study, the RMSE for the simple linear regression model using
only pH 1:1W was 0.44 pH units, and for the model using only
pH 1:2CaCl2 it was 0.42 pH units (Table 3). These are comparable with
the error estimates from analytical methods (Table 5).

The use of smoothing spline functions, ANN, or RF did not signifi-
cantly improve the predictions for our data. This is possibly due to the
limited number of soil samples in our calibration dataset and the
poorly-expressed dilution effect, especially for pH 1:1W vs. pH 1:5W.
In general, previous studies have found that the relationship between
pH dilutions becomes more obviously non-linear as sample size in-
creases. Aitken and Moody (1991) were among the first to question
the linearity of the relationship but their sample size of 90 samples
was not large enough to draw reasonable conclusions. Ahern et al.
(1995) and Henderson and Bui (2002) used a larger number of samples
to provide evidence for the lack of linearity of the relationship between
pHmethods. Our sample sizewas approximately 2 orders of magnitude
smaller than that of Henderson and Bui (2002) and one order of magni-
tude less than Ahern et al. (1995), we observed non-linearity as well.
We argue that as the sample size increases the scarcity of samples in
the extreme pH ranges is enhanced reflecting in part the natural abun-
dance of such extreme pH values and/or the bias in sample collection.

Our results and those from other research (Aitken andMoody, 1991;
Miller and Kissel, 2010) indicate that the relationship between pH dilu-
tions is largely linear with a slope of close to 1, However, some authors
have found a non-linear relationship between pH 1:5W and pH 1:5CaCl2
across the entire range of soil pH (Ahern et al., 1995; Aitken andMoody,
1991; Bruce et al., 1989; Henderson and Bui, 2002). In our study, the
slope of the regression line for pH 1:5W vs. pH 1:2CaCl2 was 1.01 indicat-
ing that the difference between pH 1:5W and pH 1:2CaCl2 increases
slightly as soil pH increases. Little (1992) suggested that, in the alkaline
pH region, buffering by calcium carbonate is responsible for the increas-
ing difference, while in extremely acid regions, the displacement and
hydrolysis of Al3+ from exchange sites by CaCl2 buffer the system.
Aitken and Moody (1991) suggested the variable charge theory as an
explanation for the tendency of the difference between pH 1:5W and
pH 1:5CaCl2 values to decrease with decreasing pH values. They fitted
quadratic functions and increased the coefficient of determination
from 0.88 (linear) to 0.92 (quadratic model) to account for this. Ahern
et al. (1995) found the linear fit suitable only for a restricted range of
soil pH values (4.5–9.0). They also offered a quadratic fit (second-
order polynomial) but declared that even the quadratic fit was not suit-
able for a wider range of soil pH values. Little (1992) found a cubic fit

(third-order polynomial) maximised the R2 and was a better represen-
tation of the relationship at the extreme ranges of pH values. Henderson
and Bui (2002) applied a smoothing spline function with six degrees
of freedom for converting the soil pH 1:5W of 70,465 samples to
pH 1:5CaCl2. The samples had a range of pH between 2.5 and 10.5. They
found the smoothing spline model with an R2 of 0.96 to be stable for
values outside of the range of the data and to significantly reduce the re-
siduals compared to the linear models. In our study, the range in soil pH
was 3.5–10.5 across all methods. Minasny et al. (2011) found that the
difference between pH 1:5W and pH 1:5CaCl2 decreased with increasing
soil EC. Using ANN, which had a curvilinear relationship between
pH 1:5W andpH 1:5CaCl2,Minasny et al. (2011) offered better predictions
for acid and alkaline soil pH; however, both linear and ANN models
performed similarly. The ANN in our study performed similarly with
the linear models confirming the findings from Minasny et al. (2011).

We argue that simplicity of the linearmodel using either pH 1:1W or
pH 1:2CaCl2 as the only predictor outweighs the benefits of addingmore,
categorical predictors (soil order,mineralogy or family particle size clas-
ses) or fitting more complex models, especially given the fact that the
laboratory analytical errors could be as large as the RMSE of various
models. Furthermore, this simple equation enables the prediction of
pH 1:5w where information on soil conditions (taxonomy, horizon,
texture or mineralogy) is not always available.

4. Conclusions

The wide range of soil sample conditions represented in our study
allowed for a comparison of the soil pH measurements between soil
orders, mineralogy classes, family textural classes, genetic master hori-
zons and depth intervals. Despite significant differences between the
within-class soil pH means of a number of soil order, mineralogy and
family particle size classes, they explained a small amount of soil
pH 1:5W variability and did not improve predictions. We also found
the addition of EC combined with the use of smoothing spline function,
ANN and RF did not substantially improve the prediction of pH 1:5W.

We conclude that simple linear regression models using only
pH 1:1W or pH 1:2CaCl2 are suitable for predicting pH 1:5W. It is possible
that a more extensive set of samples would support the fitting of the
data with other models. The errors associated with these predictive
models are comparable to those associated with the analytical methods
alone. Furthermore, the simplicity of the linear model with pH 1:1W or
pH 1:2CaCl2 as the only predictor outweighed the benefits of adding
more categorical parameters (soil order, mineralogy classes or family
particle size classes) or continuous ones (EC) to the model. The addi-
tional parameters did not substantially improve the prediction and
may not always be available formaking predictions. Our results indicate
that these simple linear regression equations are adequate to generate a
predictive soil pH 1:5W map for standard depths (0–5, 5–15, 15–30,
30–60, 60–100, and 100–200 cm) for GlobalSoilMap.

A total of 563 soil samples representing 98 pedons from the SCDB and
physically archived at the KSSL that had been previously analyzed for soil
pH 1:1W and pH 1:2CaCl2 were selected for determination of soil pH
1:5W, pH 1:5CaCl2, and EC. In this paper, only the results for the conver-
sion of soil pH 1:1W and pH 1:2CaCl2 to pH 1:5W along with the influ-
ence of EC will be presented (data can be downloaded at: ftp://ftp-fc.sc.
egov.usda.gov/NSSC/pub/geoderma/, contact webmaster@lin.usda.gov>
for any downloading issues).
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Table 5
Error source and magnitude associated with pH 1:1W and pH 1:2CaCl2 predictors and
analytical pH methods.

Error source No. RMSE

obs. pH 1:1W pH 1:2CaCl2

Simple linear regressionmodels for predicting pH 1:5W 563 0.4 0.4
Between laboratory reproducibility (R) 16 0.7 0.5
Within-laboratory reproducibility (RL) 183 0.3 0.2
Repeatability (r) 199 0.2 0.1
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